
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4437 159

A Literature Review on Timetable generation

algorithms based on Genetic Algorithm and

Heuristic approach

Anisha Jain
1
, Ganapathy S C Aiyer

2
, Harshita Goel

3
, Rishabh Bhandari

4

Student, Computer Engineering, MPSTME, Mumbai, India1,2,3,4

Abstract: The problem of timetable scheduling is described as a highly constrained NP-hard problem. It is known as

the timetabling problem by most researchers. A lot of complex constraints need to be addressed for development of an

efficient algorithm to solve this problem. In this paper, we present a comparison among the different techniques that

have been developed for timetable generation using Genetic Algorithm and heuristic algorithm.

Keywords: Genetic algorithm, Active Rules, Rule based agents, resource scheduling, heuristic algorithms, Bacterial

Foraging, Chemotaxis.

I. INTRODUCTION

The basic principle of natural selection has been

considered the main evolutionary tool. As generations

pass, biological organisms “evolve” following the

principle of natural selection. By this process of natural
selection, the fittest survives (survival of the fittest) and

reaches some remarkable forms of accomplishment.

Genetic Algorithms (GAs) were invented to mimic this

process of natural evolution and selection. Genetic

algorithms were invented with the idea to use this power

of evolution to optimize solutions to problems. John

Holland was the father of the first genetic algorithm,

which he invented in the early 1970's. [1].

Genetic algorithms (GAs) are search algorithms that begin

with a set of potential solutions. This set then evolves
toward a set of more optimal solutions. Within the sample

set, poor solutions tend to die out while better solutions

mate and propagate their advantageous traits using the

“survival of the fittest” phenomenon, thus introducing

more optimal solutions into the set, solutions that have

greater potential. For each new solution that is added, an

old one is removed. Thus, the total size of the sample set

remains constant. [2].

Genetic Algorithms are more robust than conventional AI

algorithms. Genetic algorithms do not break easily even if
the inputs are even slightly changed, or in the presence of

noise. They adapt to such changes. GAs employs the

“survival of the fittest” among individuals to generate a

solution for a problem. Each generation consists of a

population of character strings that represent the

chromosomes in our DNA. Each individual represents a

point in a search space and a possible solution. These

individuals (or points) are then made to go through the

process of evolution.

The three most important aspects of using genetic

algorithms are: (1) definition of the objective function, (2)
definition and implementation of the genetic

representation, and (3) definition and implementation of

the genetic operators. Once these three have been defined,

the generic genetic algorithm should work fairly well.

Beyond that one can try many different variations to
improve performance, find multiple optima (species - if

they exist), or parallelize the algorithms.

II. USE OF ACTIVE RULES AND GENETIC

ALGORITHM TO GENERATE THE AUTOMATIC

TIMETABLE [3]

In this paper, the authors have proposed an optimized

technique to automate timetable generation system. The

proposed technique filters out the best of active rules and

uses Genetic algorithm to generate an optimized solution

that accommodates various complex constraints such as
that for faculties, classrooms, labs, etc.

The proposed paper takes four parameters as input:

 Person – name of lecturers

 Subject – name of courses in the class

 Room – name of classes and capacity of each

 Time interval – starting time and the duration

The authors have defined three sets of constraints:

Validity violation constraints – constraints which need to

be incorporated necessarily otherwise there is no guarantee

of valid time tables generated.

 Hard constraints – constraints that need to be fulfilled

necessarily.

 Soft constraints – constraints that are obvious but

fulfilling them is not so demanding. Solutions are
considered to be better if these can be incorporated.

Next they have defined what Active rules are. Active

Rules are Event-Condition-Action (ECA) rules. The ECA

rules execute as follows: “when an event occurs, check the

condition and if it is true execute the action”. The event

part signifies which event led to the invocation of the rule.

The condition part is the logical test that is carried out. If

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4437 160

the test evaluates to true, the action part is executed. The

action part carries out the action to be performed. This

may further lead to invocation of new ECA rules. In the

next section, they have defined what genetic algorithms

are. They have explained how Genetic algorithms (GA)

work in a manner similar to Natural Selection. A
population pool of chromosomes is maintained which is

called strings. The chromosomes are strings of symbols or

numbers. These are also called the genotype (the coding of

the solution), whereas the solution itself is called the

phenotype. These chromosomes need to be evaluated for

fitness. Poor solutions are ignored. After making small

changes to remaining solutions "natural selection" is

allowed to take its course. This helps evolve the gene pool

so that better solutions are discovered.

In this paper, the authors have proposed an automatic way
that selects the best action to execute when an event

occurs (ECA rules have not been considered used yet).

The genetic algorithm selects the action to be executed.

When an event occurs, the system has several actions that

it can choose to perform. For each possible event, there is

another ordered set of possible actions that can be

performed when that event occurs that needs to be

maintained. The genetic algorithm always selects the first

action initially, but a genetic algorithm running in parallel

may dynamically change the order of the actions. The

reactive behavior of how the agents (constraints) respond

to events is controlled by the genetic algorithm. There is
another way (the "rational" level) to control the agent. This

can employed especially if the agent is built using two

methods (built by one partially and controlled partially by

the constructs). In this case, the architecture should be a

part of the agent. Some actions may be selected for

execution using the traditional approach and some using

other Genetic Algorithm approach. This method can be

used for a subset of the events and the actions of the

system. This simplifies the design and reduces testing time

and maintenance time.

This paper explains how the authors have used a set of

active rules to express the knowledge of intelligence and

how a genetic algorithm can be used to dynamically

prioritize rules. The advantages of this approach are:

distributed solution, load balancing and fault situations.

These help in optimizing the timetable generation solution.

The authors propose that in this, many good solutions can

be generated and the genetic algorithm finds the best one

of them. In cases where there is only one good solution the

algorithm may fail. In such a case, the algorithm can be

restarted by the use of Active Rules that will help finding a

better solution. This approach has a simplified design and
reduced development and maintenance times of rule-based

agents.

III. DYNAMIC TIME TABLE GENERATION

CONFORMING CONSTRAINTS A NOVEL

APPROACH [4]

In this paper, the authors have proposed an approach that

solves the time tabling problem. This approach takes into

account many constraints including allocation of room,

teacher, course, time slot, etc. The algorithm builds the

timetable in an incremental manner, dynamically adjusting

resources in order of complexity. The algorithm proposed

is dynamic in nature. It deals with managing certain

constraints as input, then using heuristic approach to
scanning all the constraints on priority basis. The sequence

of checking of constraints is also dynamic in nature.

Though this sequence of constraints can also be altered

manually.

There are two approaches, in one course registration is

done and then time table is generated while the reverse is
done for second approach. The first approach requires that

course registration be carried out well in time to generate

the timetables in time. This was helpful when plenty of

resources were available and timetable generation easy.

The other approach generates the timetables first and then

course registration is done. This approach was used when

resources were limited and utilization of those resources

was needed. The authors have divided the constraints into

„Hard constraints‟ and „Soft constraints‟. Hard constraints

are those that cannot be avoided whereas soft constraints

can be ignored if fulfilling them is not feasible. The main

constraint that the authors have taken under consideration
is that one person (teacher or student) cannot be at two

places simultaneously or that there is limit on the number

of persons accommodated in a room.

The proposed algorithm is based on heuristic algorithm.

The algorithm takes values as input and manages the

constraints and resource scheduling one by one.

The main features of the algorithm are as follows:

 The system generates intermediate level as well many

final reports including weekly time table, teacher

timetable, room wise time table, student time table,

department level time table etc.

 The system generates separate as well as combined

timetable for female campus as well as for male

campuses.

 It distributes workload of lectures equally among all
the specified time slots.

 It prioritizes time slots according to customized

priority. If lecture cannot be adjusted then it can be

moved up in higher priority slot until adjusted

accordingly.

 User can set gap of the number of days among the

lectures, it can dynamically be adjusted as well.

 The time tabling algorithm tries to adjust courses to

user customized slots according to specified time.

 The time table software adjusts the course lectures for

the groups of female and males separately.

 It tries to adjust the lectures of a course on the same

time within the weekdays.

 All parameters are customized by the user.

 It depicts the progress of courses adjustment at

intermediate report level and if clashes cannot be

removed and impossible to adjust then displays that

course and number of lectures, which cannot be

adjusted.

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4437 161

 Various programming techniques have been ensure to

improve the performance of the system.

The following steps were followed to implement the

algorithm:

 Load the course which may be considered as having
diverse constraints and will be difficult to adjust,

named as problematic course.

 Filter the schedule if the course is defined to adjust in

any specific slot of time and then find the slot in the

filter schedule where minimum number of lectures

already adjusted.

 Then manages the next lecture time of class in the

week after the gap of number of days specified by

user.

 Then it checks all the constraints if any constraint is

violated then again find the minimum gap and repeats
the process again and again.

 In case of failure, removes gap and tries, if not

succeeded then removes slot and continue this activity

until adjustment is achieved.

The system has been implemented using latest tools and

techniques. The user interface of the system has been

designed in such a manner that the user has the flexibility

to adjust input parameters at initial as well intermediate

level. The system takes input from the university

management system and from the user. Timetables are
generated at various levels of the architecture such as at

campus, department, and class level. Separate timetables

are generated for teachers as well.

Thus, the authors have proposed an algorithm that works

heuristically based on bottom up approach. They argue

that the evolutionary nature of the algorithm makes it

effective to be utilized to remove constraints that can

cause overlapping also informally known as clashes in

resource utilization.

IV. OPTIMAL TIME-TABLE GENERATION BY

HYBRIDIZED BACTERIAL FORAGING AND

GENETIC ALGORITHM [5]

In this paper, the authors have presented a hybrid approach

to timetabling problem, which uses bacterial foraging, and

genetic algorithm techniques. In the proposed algorithm, a

point in n-dimensional search space is represented by a

bacterium. Here, each point is considered to be a potential

solution to the timetabling problem. The foraging

behaviour of E. coli bacteria is simulated to search for an

optimal solution. Genetic algorithm is used at the

chemotaxis stage to give sense of biased-movement to the
bacteria.

The authors have mentioned several previously devised

approaches based on Genetic Algorithms (GA) and

hybrids that have proved effective for solving the problem

of timetable generation. In this paper, they have proposed

an optimization approach based on the search and optimal
foraging behaviour of Escherichia coli (E. coli) bacteria.

Bacterial foraging optimization algorithm (BFOA) has

been applied in optimal watermarking, network

scheduling, optimal design of Yagi-Uda array, edge

detection, edge detection in noisy images colour image

enhancement, etc. Hybrid approach involving Genetic

Algorithms (GA) and Bacterial Foraging Optimization

algorithms (BFOA) has been used for function
optimization problems. The problem with BFOA is that if

the bacteria takes very large steps and the optimum value

lies in a valley with steep edges, the search will tend to

jump out of the valley by swimming through them without

stopping. On the other hand, if the step size values of the

bacteria are too small, convergence can be slow, but if the

search finds a local minimum it will not deviate too far

from it.

In the proposed algorithm based on genetic algorithm and

BFOA, a virtual bacterium represents a point in n-
dimensional search space where each points maybe a

potential solution to the timetabling problem. The

chemotaxis of the bacteria is used to search for optimal

solutions to the problem.

The authors have used the foraging behaviour of E. coli. as

an optimization process. Here, the bacterium seeks to

maximize the energy obtained per unit time spent. The

process of foraging involves the four stages; a)

chemotaxis, b) swarming, c) reproduction, and d)

elimination and dispersal. The size of the initial set of

solutions is equal to the number of bacteria. In order to
reach a global optimum, the whole set of bacteria is made

to undergo these four stages in an iterative manner.

The chemotaxis of the bacteria, as defined by the paper, is

like a biased random walk where the bacteria try to search

for places with better nutrient gradient alternating between

“swim” and “tumble”. Swarming stage is the cell-to-cell

signalling stage. In the reproduction stage, the weaker

individuals are eliminated and a fitter bacterium splits into

two bacteria. Elimination and dispersal stage is to avoid

falling into premature convergence. If numbers of
chemotactic steps chosen by the bacteria are too short or if

the number of reproduction levels is not sufficient,

premature convergence to local minima occurs.

In terms of genetic algorithms, a set of potential solutions

is called the population. Each solution item (individual) in

the population is measured by a fitness function. Fitness is

a quality value by which a measure of the reproductive

efficiency of chromosomes is made. The process of

evolution is maintained by selection, crossover and

mutation. Those processes are called genetic operators.

For the proposed hybrid approach based on BFOA and

GA, for timetable generation, a variable length

chromosome representation is applied where each

structure represents a complete timetable. This includes

the number of periods and the rooms. Each ClassID

structure has a unique numeric ID and each such structure

encapsulates the information of the teacher, the subject

and the student groups allocated. The time-slots available

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4437 162

in a day for each room are arranged as a vector. The vector

arrangement helps in quick lookup of the classes allocated

for a room for a particular time-slot. In each time slot, we

can have multiple classes (ClassIDs). Thus, a linked list of

ClassIDs is considered as one time slot.

The bacterium generates certain motion patterns due to the

presence of chemical attractants and repellents. These

patterns are called chemotaxes. For E. coli, this process

was simulated by two different moving ways: run or

tumble. A bacterium has the flexibility to alternate

between these two modes of operation its entire lifetime.

The bacterium may tumble after a tumble or tumble after a

run. It may run after a tumble or keep running. This

alternation between the two modes enables the bacterium

to move in "search" for nutrients.

The movement of bacterium may be presented by:

θi j + 1, k, l = θi j, k, l + C(i)ϕ(j) (1)

Where C (i) {i = 1, 2,…, P} is the size of the step taken in

the random direction and ϕ (j) is the random direction of

movement after a tumble. θ^i (j, k, l) ϵ〖 R〗^n represents

a point in the search space, which is the position of ith

bacteria at the jth chemotactic step, kth reproductive step,

and lth elimination dispersal step. This point also

represents a potential timetable solution, which may or

may not have clashes.

In the proposed hybrid approach, the movement parameter

C (i) ϕ (j) is derived using the crossover and mutation

operators of GA as follows:

 The bacteria are kept sorted in an ordered list

according to their health.

 For the jth chemotactic step of bacterium i, another

bacterium h whose health is better than i is chosen

from the list and crossover operator of GA is applied

between the two.

 The resultant offspring is mutated with some
probability to escape local minima.

 If the mutated bacterium has lower number of clashes

than the ith bacterium then the bacteria will swim in

the same direction, i.e.,

 The ith bacterium is moved to the place of the resultant

bacterium and,

 For (j+1) th step the same healthy bacterium h will be

used for crossover and mutation.

 If the resulting bacterium is not better than the current

bacterium i then it will not be move to the new

location and a different healthier bacterium will be
selected next time. This technique provides the sense

of biased movement as well as swarming for the

problem of time table generation.

 Crossover: A crossover operator is used to recombine

two chromosomes in chemotactic step to get a better

chromosome (in our case chromosome is replaced by

bacterium).

The crossover is selected as follows:

Where the equation parameters refer to offspring‟s

generations ϕ^ (-v), ϕ^ (-u) refer to parent‟s generations

and j is the chromosome of jth step and λ is the multiplier.

 Mutation: Mutation adds new information in a

random way to the genetic search process and

ultimately helps to avoid getting trapped at local
optima.

The dynamic mutation operator is selected as follows:

Where k is the generation number, L and U are lower and

upper domain bounds of the variable ϕj. ∆ (k, j) is given

as:

Where η is a random number from [0, 1], T is the number

of maximum generation, and b is a system parameter

determining the degree of dependency on iteration
number. Choosing this mutation operator causes the

mutation to become more restrained with increasing

generations because the function will tend to deviate less

with increasing values of k.

The algorithm and pseudo code for the hybrid approach is

as follows:
1. Initialize the bacterial foraging parameters:

P-Population size

NC- Number of chemotactic steps taken by bacteria in its

lifetime

NRe- Number of reproduction steps

NED-Number of elimination-dispersal events

PED- Probability of Elimination-dispersal

2. Start elimination-dispersal loop: l = l + 1.

3. Start reproduction loop: j = j + 1

4. Start chemotaxis loop: k = k + 1.

For each bacterium in the population (P) take a

chemotactic step for bacterium as follows:

a. Compute initial value of health for this bacterium and

save it as clashLast.

b. Move the bacterium in the direction whose bias is

determined using GA

c. Calculate the health of bacteria in new location and
save it as clash.

d. If clash<clashLast, then swim in the same direction.

e. Repeat step (b) to (d) till clashLast < clash

f. Save the bacterium in the set of healthy bacteria to be

used in reproduction step.

5. If k< NC, go to Step 3. In this case, continue
chemotaxis, since the life of the bacteria is not over.

6. Reproduction: From the set of healthy bacteria clone

the healthy ones and the bacteria, which have higher

number of clashes, will die.

7. If j< NRe, go to Step 3, otherwise, go to Step 8.

8. Elimination-Dispersal: The bacterium is eliminated or

simply dispersed to a random location in the

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4437 163

optimization domain based on Vi > PED. Where Vi is

a specific parameter such as a random number in an

interval [0, 1] or desired cost.

9. l<NED, then go to step 2; otherwise end.

Hence, the paper concludes that BFOA and Genetic
algorithms offer a great mechanism for solving

combinatorial problems. The authors have utilized this

BFOA-GA mechanism for solving the timetabling. Using

BFOA helps reduce the time taken to converge to a

solution, helps achieve global optimum and also to avoid

the problem of premature convergence. The use of GA

helps in selecting the optimum step size and direction of

chemotaxis.

To avoid confusion, the family name must be written as

the last part of each author name (e.g. John A.K. Smith).
Each affiliation must include, at the very least, the name of

the company and the name of the country where the author

is based (e.g. Causal Productions Pty Ltd, Australia).

V. CONCLUSION

The first paper proposes a technique that filters out the

best active rules and uses Genetic Algorithm to generate

an optimised solution. The system selects one rule with the

highest priority to fire, or arbitrarily selects one rule to fire

if there is more than one with the same priority.

The second paper uses two approaches. One in which
course registration is done before generation of timetable

and the other in which course registration is done after

generation of timetables. The former approach was

implemented when there was more number of resources

whereas the latter was used when resources were limited

and need to be properly utilized. This system has been

deployed in Al-Faisal University, Kingdom of Saudi

Arabia.

The third paper uses a bacterium to represent a point in n-

dimensional search space where each point is may be a
potential solution to the timetabling problem. The

movement of E. coli bacteria leads to search for an optimal

solution. The E. coli bacteria moves (tumbles or runs) to

search for nutrient. This search for nutrient gives us the

solution for the timetabling problem. Genetic algorithm is

used at the chemotaxis stage.

The authors have also computed a graph to show that the

time taken to solve the timetabling problem using only GA

based algorithm was more than the time taken when using

their proposed BFOA-GA based algorithm.

In the first and the third paper, optimal solutions are

generated. The algorithm used in the first paper is time

consuming. Also, in cases where resources are scarce, the

time required maybe considerably high. The second paper

proposes a practically implemented approach that deals

with both, the abundance as well as scarcity of resources.

The third paper that uses BFOA-GA based algorithm

reduces time taken for generation of timetable

significantly. This paper makes use of E. coli bacteria that

moves around in search of nutrient thus giving us the best

possible solution even in cases where resources are scarce

or plenty. Thus, we conclude that this algorithm will work

better than the rest. The comparison between the three

papers can be seen as below:

TABLE I COMPARISON

ACKNOWLEDGMENT
We would like to thank Dr. Sharad Mhaiskar, Dean,

MPSTME and Dr. Dhirendra Mishra, Associate Dean,

MPSTME and Head of Department, Computer

Engineering Department, MPSTME for sharing their

valuable expertise and making available all the resources

required by us for developing this system.

We would also like to thank Ms. Krishna Palod,

Professor, MPSTME for her constant guidance and

valuable feedback that made the completion of this system

possible.

We would also like to thank all members of the Time

Table Generation Committee, MPSTME whose insight

and expertise greatly aided our research and development.

REFERENCES
[1]. http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/hmw/article1

.html

[2]. http://jgap.sourceforge.net/doc/gaintro.html

[3]. Barkha Narang, Ambika Gupta, and Rashmi Bansal, “Use of Active

Rule and Genetic Algorithm to Generate Automatic Time-Table,”

in International Journal of Advances in Engineering Sciences Vol.3

(3), July, 2013.

[4]. Tahir Afzal Malik, Hikmat Ullah Khan, and Sajjad Sadiq,

“Dynamic Time Table Generation Conforming Constraints a Novel

Approach,” in ICCIT 2012.

[5]. Om Prakash Verma, Rohan Garg, and Vikram Singh Bisht,

“Optimal Time-Table Generation by hybridized Bacterial Foraging

and Genetic Algorithms,” in International Conference on

Communication Systems and Network Technologies, 2012.

